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The thermodynamic and dynamical behavior of a gas of hard disks in a narrow channel is studied theoreti-
cally and numerically. Using a virial expansion, we find that the pressure and collision frequency curves exhibit
a singularity at a channel width corresponding to twice the disk diameter. As expected, the maximum Lyapunov
exponent is also found to display a similar behavior. At high density, these curves are dominated by solidlike
configurations which are different from the bulk ones, due to the channel boundary conditions.
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I. INTRODUCTION

The thermodynamic behavior of hard-disk systems has
been a subject of considerable interest in recent years[1]. In
particular, the freezing transition taking place in these sys-
tems has been analyzed by computer simulations for cases
where the aspect ratio of the simulation box is close to 1.
Furthermore, the dynamical stability of such systems has
been studied in detail and Lyapunov spectra have been com-
puted[2,3]. The latter describe the exponential growth, and
decay, of infinitesimal phase-space perturbations and are use-
ful for the analysis of collective processes involving various
different time scales. For example, the maximum Lyapunov
exponent was found to exhibit a maximum in the density
regime characteristic for the fluid-to-solid transition[4]. Fur-
thermore, the phase-space perturbations giving rise to the
smallest positive and negative Lyapunov exponents are col-
lective vector fields reminiscent of the modes of fluctuating
hydrodynamics and are referred to as Lyapunov modes[2,3].
It is expected that they provide a sensitive tool for the study
of collective flows in phase space.

In a restricted geometry, such as a narrow channel, one
expects other interesting features to emerge when the width
of the channel becomes comparable to the disk’s size. In
such a system, Lyapunov modes only exist for wave vectors
parallel to the channel axis and are easily observed since the
number of particles is not excessively large in spite of the
large extension of the system in one direction[2,3]. This
provided the motivation for us to reinvestigate the thermo-
dynamic and dynamical properties of a hard-disk gas in a
narrow channel.

It is found that for narrow channels, the pressure exhibits
a singularity at a channel width equal to twice the diameter

of the disks. Narrower channels do not allow particles to pass
each other. At the same width, a singularity is also observed
for the collision frequency. In addition, the maximum
Lyapunov exponent and the Kolmogorov-Sinai entropy dis-
play a nontrivial dependence on the channel width in this
regime.

The model we study consists ofN hard disks in a two-
dimensional box with side lengthsLx, Ly and aspect ratioA
=Ly/Lx. We vary the width of the box, keeping the volume
V=LxLy and the particle densityr=N/V constant. Very small
aspect ratiosA!1 are considered, for which the box re-
sembles a narrow channel. For most of our work we use
periodic boundary conditions in both directions. Exact ther-
modynamic properties are known for extremely narrow
channels in this case,Ly,Î3s [5,6]. Recently, the transport
properties of two particles in a square periodic box,A=1,
have been studied by computer simulation[7]. The case of
two particles withreflectingboundary conditions in both di-
rections has also received attention, both by molecular dy-
namics[8] and analytical approaches[9]. It was found that
for certain aspect ratios the compressibility becomes nega-
tive. We find analogous results also for partly reflecting
boundaries, which are reflecting for the walls parallel to the
long direction of the box,x, and periodic for the walls par-
allel to y.

Throughout, reduced units are used for which the disk
diameters, the particle massm, and the kinetic energy per
particle,K /N, are unity. There is no potential energy in this
case, and the total energyE is identical to the kinetic energy
K. As a consequence, the temperatureT is just an irrelevant
parameter and is fixed to unity. Also Boltzmann’s constantk
is taken unity.

The paper is organized as follows. In Sec. II we consider
the low-density limit. In Sec. II A we present an analytical
derivation of the pressure and show that the singularity tak-
ing place atLy=2 already exists in this limit. In addition, we
obtain an analytical expression for the collision frequency
which shows a behavior very similar to that of the pressure.
Results of numerical simulations of these quantities and of
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the Lyapunov spectra are presented in Sec. II B. A numerical
study of the high-density case is presented in Sec. III. Full
Lyapunov spectra for periodic systems with periodic bound-
aries are discussed in Sec. IV. We close with a brief discus-
sion of the results in Sec. V.

II. LOW-DENSITY LIMIT FOR SYSTEMS
WITH PERIODIC BOUNDARIES

A. Virial approach to the equation of state
and collision frequency

The pressure in the low-density limit is obtained by the
leading terms in the virial expansion as applied to the
narrow-channel geometry. LetqsLyd be the excluded volume
of a single disk in the channel. The phase-space volume as-
sociated with placingN disks in the channel is given by

VsNd = VsV − qd ¯ fV − sN − 1dqg, s1d

which, to leading order in the density, is reduced to

VsNd . VNS1 −
NsN − 1d

2

q

V
D.VNS1 −

q

2v
DN−1

. s2d

Here, v=V/N is the specific volume. For low density, the
specific entropy of the gas is given by

s;
S

N
= k lnSv −

qsLyd
2

D , s3d

wherek is Boltzmann’s constant.
For Ly.2, the excluded area is simply given by the area

of a disk of radius 1, namelyqsLy.2d=p. To leading order
in the density, the pressureP is given by

Pv
kT

= v
] s

] v
. 1 +

p

2v
, s4d

and is thus independent of the channel widthLy. This is the
expected leading-order expression of the virial expansion of
a gas of hard disks.

For 1,Ly,2, however, the excluded area is reduced due
to the interference with the disk image resulting from the
periodic boundary condition in they direction (see Fig. 1).
Simple geometrical considerations yield

qsLyd = 2 u + sins2ud, s5d

where

Ly = 2 sinsud. s6d

The excluded volumeqsLyd depends onLy. Taking the de-
rivative of the entropy with respect to the volume and keep-
ing the aspect ratioA;Ly/Lx constant, one finds to leading
order in the density

Pv
kT

= 1 +
qsLyd
2v

−
Ly

4v
Î4 − Ly

2. s7d

Note that the pressure curve exhibits a square-root singular-
ity as one approachesLy=2 from below.

The singularity atLy=2 does not signify a phase transition
in the usual sense as it is not a collective phenomenon. In
fact, the singularity exists even for finiteN and it explicitly
shows up in the second term of the virial expansion. This is
different from the usual liquid-solid transition in the bulk,
which is obtained only after summing over all orders of that
expansion. The singularity in the narrow channel is a conse-
quence of the fact that the available volume for the disks is a
singular function of the control parameterLy at Ly=2.
Higher-order terms in the virial expansion are expected to
exhibit a singularity at other integer channel widths,Ly
=3,4. . .. Thus singularities in the pressure are expected to
show up at these widths at higher densities.

We now turn to the evaluation of the collision frequency
n2. The virial expression for the pressure, appropriately
modified for two-dimensional hard disks, is given by[10]

PV

NkT
= 1 +

1

2NkTt
o
c

r c ·vc, s8d

where the sum is over all collisions taking place during the
time intervalt. Here, the relative position vector of two col-
liding particles i and j at the time of the collision,r c; r i
−r j, satisfiesur cu=s, and vc;vi −v j is the corresponding
relative precollision velocity. This may be written as

PV

NkT
− 1 =

1

2kT
n2Dp, s9d

whereDp is the average momentum transfer in a collision.
For a large aspect ratioA, the collision frequency is given by
[11]

FIG. 1. The excluded area associated with a disk in a channel of
width Ly,2 for the case of periodic boundary conditions. The area
qsLyd is given by that of the union of the disk and its translationally
displaced image within the channel.
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n2 = 2p1/2skTd1/2ss/vdgssd, s10d

wheregsrd is the pair distribution function. At contact,r =s,
and in the low-density limit one hasgssd=1. Combining this
result with the Eqs.(4) and (9), one finds for the average
momentum transfer

Dp = sÎp/2dÎkT. s11d

This expression may also be derived directly from the
Maxwell-Boltzmann velocity distribution. It is expected to
hold also for narrow channels. The reason is that in the nar-
row channel the velocity distribution is still isotropic and is
given by the Maxwell-Boltzmann distribution(see Sec. II B).
Therefore, one can use Eq.(11), together with Eq.(9), to
obtain the collision frequency for narrow channels,

n2

ÎkT
=

4
Îp

SPv
kT

− 1D . s12d

This expression is valid both below and aboveLy=2.
It is expected that in such a highly anisotropic system the

pressure tensor is not isotropic. In the low-density limit, one
can evaluate the diagonal components of the pressure tensor,
Pxx andPyy, using again the expression for the entropy in Eq.
(3). One finds

Pxx = LxS ] s

] Lx
D

Ly

=
v

v − s1/2dqsLyd
,

Pyy = LyS ] s

] Ly
D

Lx

=
v − s1/2dLy

Î4 − Ly
2

v − s1/2dq
. s13d

Furthermore, one has

vS ] s

] v
D
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1

2
LxS ] s

] Lx
D
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+
1

2
LyS ] s

] Ly
D

Lx

,

and, hence,P=sPxx+Pyyd /2.
It is evident that in the low-density limit, the pressure

tensor is isotropic forLy.2. It becomes anisotropic for
Ly,2. At higher densities, the two pressure-tensor compo-
nents differ even aboveLy=2 (see Sec. III). The square-root
singularity of the total pressureP at Ly=2 originates from
Pyy. The other component,Pxx, exhibits a weaker singularity.

B. Numerical simulations

Here we carry out numerical simulations for the compu-
tation of the pressure, the collision frequency, and the
Lyapunov exponents. The pressure is evaluated from the im-
pulsive version of the virial theorem Eq.(8) [12,13]. The
collision frequency of a single particle,n2, is obtained from
the total number of collisions per unit time, divided byN/2.
For the Lyapunov spectrum, we use the algorithm outlined in
Refs. [4,2]. For theperiodic-boundary case, the linear mo-

mentum is conserved both inx and y directions, and, as
expected, altogether six Lyapunov exponents vanish due to
the conservation of energy, momentum, center of mass(only
in tangent space), and the regularity of the dynamics in the
phase-flow direction. For thepartly reflectingboundary case,
only four of the exponents vanish due to a lack of momen-
tum and center-of-mass conservation in they direction. The
Kolmogorov-Sinai(KS) entropy, hKS, which measures the
rate of information gain on the initial conditions due to the
time-reversible dynamics, is given by the sum of the positive
exponents[14]. Since its dependence on the channel width is
qualitatively similar to that of the maximum Lyapunov ex-
ponentl1, we concentrate on the latter in the following.

In Fig. 2, we compare the theoretical curves for the pres-
sure and collision frequency, Eqs.(4), (7), and(12), with the
numerical results. In this low-density regime, an excellent
agreement is obtained. Also shown in this figure is the
channel-width dependence of the maximum Lyapunov expo-
nent. It shows a shoulder at the critical widthLy=2. The
tangent-space perturbation associated withl1 has been
shown to be localized in space[3]. This exponent is closely
connected to the collision frequency and, as a consequence,
has a similar qualitative behavior. This is particularly pro-
nounced in the high-density regime as dealt with in the next
section.

In Fig. 3, we compare the theoretical curves for the
pressure-tensor componentsPxx and Pyy with computer
simulations for a densityr=0.01 and find excellent agree-
ment. As noted above, it is evident that the square-root sin-
gularity of P originates fromPyy.

We have numerically verified that even in the narrow-
channel regime,Ly,2, the system is ergodic enough such
that the velocity distribution is still isotropic and is given by
the Maxwell-Boltzmann distribution. This supports the use
of Eq. (11) for the average momentum transfer at a collision
even forLy,2.

FIG. 2. Theoretical and simulation results forN=20 particles
and a densityr=0.01 for the periodic-boundary case. Shown is the
dependence of the maximum Lyapunov exponentl1 (right vertical
scale), of the equation of statesPv /Td−1 (left vertical scale, full
squares), and the rescaled single-particle collision frequencyn28
=sÎp /4dn2 (left vertical scale, open squares) on the channel width
Ly. The full line is computed from Eq.(7).
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The singular behavior of the pressure is due to a sharp
increase of the collision frequency as one approachesLy=2
from below. As can be seen in Fig. 2, the maximum
Lyapunov exponent is reminiscent of this singularity as it is
closely related to the collision frequency. At this low density
this singularity is not clearly pronounced. However, as will
be shown below, at high densities the existence of a cusp at
Ly=2 is evident. The increase of the collision frequency is
due to arresting configurations in which a pair of disks be-
come trapped due to the boundaries.

III. HIGH-DENSITY REGIME

For hard-disk systems at high density one has to rely only
on numerical simulations. In Fig. 4 we present the pressure,
the collision frequency, and the maximum Lyapunov expo-
nent as a function ofLy at a densityr=0.4. It is observed that
the singularity taking place atLy=2 persists at high density
in all three curves. It is, of course, a consequence of the
diverging collision frequency experienced by any two par-
ticles trying to pass each other. According to Eq.(12), the
curves for the collision frequency and forPv /T−1 are pro-
portional with a proportionality constant independent of the
density. This is evidently confirmed in Fig. 4. For the special
case of onlyN=2 particles in a square periodic box, the
singularity atLy=2 appears at the critical densityrc=0.5 and
has recently been observed[7].

When the density is increased beyond 0.5, another broad
peak emerges at someLy,2 in the curves for the pressure
and the maximum Lyapunov exponent. This is demonstrated
in Fig. 5. This feature is attributed to the pronounced short-
range crystallinelike order which is induced by the narrow-
channel boundary conditions. Note that this order is not the
natural triangular lattice of the system in the bulk. A typical
microscopic configuration corresponding to this structure for
a density 0.9 andLy=1.5 is shown in Fig. 6. All particles are
arrested and cannot travel across the system, which has been
referred to as the localized regime[7]. The structure in Fig. 6

nearly corresponds to the most densely packed structure pos-
sible for such a channel width and density. Hence, it is char-
acterized by a minimum of the mean free path and a maxi-
mum of the collision frequency and gives rise to the
pronounced pressure maximum atLy=1.5 in Fig. 5.

We have computed also the two pressure-tensor compo-
nentsPxx andPyy for a system with a densityr=0.8. As can
be seen in Fig. 7, the two components are significantly dif-
ferent both above and belowLy=2. The singularity of the
pressure atLy=2 is evidently caused byPyy, as is also the
case for low densities.

All the examples so far are for the case of periodic bound-
aries in both thex and y directions. A qualitatively similar
result is obtained, if the long sides of the channel are elasti-
cally reflective, whereas the short sides remain periodic. This
is demonstrated in Fig. 8 forN=100 particles at a density of

FIG. 3. Comparison of theLy dependence of the theoretical
curves for sPv /Td−1, sPxxv /Td−1, and sPyyv /Td−1 (lines) with
numerical simulations(points) for a system with 20 disks at a den-
sity r=0.01.

FIG. 4. Simulation results forN=20 particles and a density
N/V=0.4 for the periodic-boundary case. Shown is the dependence
of the maximum Lyapunov exponent,l1 (right vertical scale), of the
equation-of-state functionsPv /kTd−1 (full circles with labelP, left
vertical scale), and of the rescaled single-particle collision fre-
quency, n28=fsp /kTd1/2/4gn2 (crosses, left vertical scale) on the
channel widthLy. n28 agrees well withP. The dashed curves labeled
Pxx and Pyy give the contributionssPxxv /kTd−1 andsPyyv /kTd−1
of the respective pressure-tensor components.

FIG. 5. Ly dependence of the pressure for various densities as
indicated by the labels.
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N/V=0.4, whereP, l1, andn are shown as a function of the
box width Ly. The maxima are not as sharp as in Fig. 4 for
the periodic case, but are as pronounced.

In order to get some insight into the dynamics of such
systems, it is useful to study the diffusion coefficient. It is
well known that this coefficient does not exist in two-
dimensional systems in the thermodynamic limit[15]. How-
ever, it is possible to compute the mean-squared displace-
ment for afinite system and to extract effective diffusion
constantsDx and Dy in the x and y directions, respectively.
They are obtained from fits to the linear growth ofkDx2l and
kDy2l for times t.40. The results for a densityr=0.8 are
shown in Fig. 9. As expected,Dx vanishes forLy,2, while
Dy is nonzero. In fact,Dy increases withLy approaching
unity as a result of the periodic-boundary restrictions disfa-
voring momentum exchange in they direction. Another in-
teresting feature of Fig. 9 is the vanishing ofDx andDy for
Ly.2.7. This is due to solidlike triangular configurations
characteristic of the bulk at this high density.

IV. SOME REMARKS ON LYAPUNOV SPECTRA

In Fig. 10, we plot the Lyapunov spectra for a 100-disk
system in a narrow periodic box. All spectra are for a density
r=0.4, which corresponds to a fluid. Since the volume,LxLy,
is fixed, an increase of the channel widthLy, varied in the
figure in steps of 0.4, decreasesLx accordingly.Ly is indi-
cated by the labels. Each spectrum consists of 4N Lyapunov

exponents, of which only the positive branch,hll ù0;l
=1,2, . . . ,2Nj, is shown. The spectra are only defined for
integer values of the index,l, which labels the exponents
according to size. The lines are only drawn for clarity. Ac-
cording to the equilibrium formulation of the conjugate-
pairing rule, the negative branch of the spectra,hll ù0;l
=2N+1, . . . ,4Nj, is the mirror image of the positive branch
[16].

The inset of Fig. 10 provides a magnified view of the
small exponents. They turn out to be degenerate, which gives
rise to a steplike appearance of the spectra[4]. The tangent-
space perturbations associated with these exponents are col-
lective, wavelike fields defined over the simulation box, and
are referred to as Lyapunov modes[2,3,17]. The multiplicity
is determined by the intrinsic symmetries of the Hamiltonian
and the boundary conditions, which give rise to the con-

FIG. 6. A typical microscopic configuration for a densityr
=0.9 and a channel widthLy=1.5. It resembles the closest-dense
packing structure consistent with the periodic boundaries. It mini-
mizes the mean free path and, hence, maximizes the collision fre-
quency and the pressure, if the channel width is varied at constant
density,r=0.9.

FIG. 7. Simulation results for the pressure curvessPv /Td−1,
sPxxv /Td−1, andsPxxv /Td−1 as a function of the channel widthLy.
The system consists ofN=20 particles at a densityr=0.8.

FIG. 8. Simulation results forN=20 particles and a density
N/V=0.4 in a rectangular box with partly reflecting boundaries(see
the main text). Shown is the dependence of the maximum Lyapunov
exponent,l1 (right vertical scale), of the equation-of-state function
sPv /kTd−1 (full circles with labelP, left vertical scale), and of the
rescaled single-particle collision frequency,n28=fsp /kTd1/2/4gn2

(crosses, left vertical scale) on the channel widthLy. n28 agrees well
with P. The dashed curves labeledPxx and Pyy give the contribu-
tions sPxxv /kTd−1 and sPyyv /kTd−1 of the respective pressure-
tensor components.

FIG. 9. Effective diffusion constants(see the main text) in thex
andy directions for disks in a narrow channel with periodic bound-
aries at a densityr=0.8.
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served quantities, energy, and momentum. A complete clas-
sification in terms of transversesTd, longitudinal sLd, and
momentumsPd modes is given in Ref.[20]. Theoretical at-
tempts have been made to interpret the modes in terms of
fluctuating hydrodynamics[21–25].

We observe that a particular exponent, say the smallest
positive, increases withLy and, hence, with the wave num-
ber, k=2p /Lx=2pLy/V, belonging to this mode. This is re-
ferred to as a “dispersion relation”[2,3]. Thus, l2N−3 in-
creases monotonously withLy. However, as Fig. 10 shows,
this proportionality does not hold for the large exponents.
There is a crossover of the spectra reversing the sequence of
l nearLy=2. This is mainly a consequence of the collision
frequency. The perturbations for the large exponents are
found to be localized in space with only a small fraction of

the particles contributing to the large exponents at any in-
stant of time. The active zone moves around in space, restor-
ing homogeneity on average.

The smooth lines in Fig. 11 show Lyapunov spectra for
analogous 100-disk systems for a densityr=0.9, where the
channel width is indicated by the labels. The caseLy=1.5
corresponds to the arrested structure of Fig. 6 and is of par-
ticular interest. In Fig. 11, we compare it with the dash-
dotted spectrum of 100 disks in a periodic channel with an
aspect ratioLy/Lx=Î3/sN/2d. For Ly=1.8258 andN=100,
the density isr=1.039, and the particles form a triangular
lattice characteristic of a solid in the bulk. Although the
nearest-neighbor separations and, hence, the collision fre-
quencies, are nearly the same for both systems, the Lyapunov
spectra are distinctly different. The maximum exponent,l1,
for the arrested structure is significantly larger than for the
triangular system, whereas the behavior of the smaller expo-
nents is just the reverse. This example demonstrates that the
Lyapunov spectra are sensitive to structural details and are
potentially a useful tool. But it is fair to say that no theory
exists at present to interpret such spectra in full detail.

V. DISCUSSION

In this work, the thermodynamic and dynamical behavior
of hard disks in a narrow channel is analyzed using analyti-
cal and numerical approaches. The main results are for peri-
odic boundary conditions in bothx andy directions. Related
studies of reflecting boundaries parallel to the channel axis
reveal that similar features exist there as well. It is found that
the pressure, collision frequency, maximum Lyapunov expo-
nent, and Kolmogorov-Sinai entropy curves exhibit a singu-
larity for a channel width equal to twice the disk diameter.
For low densities, this singularity forP andn2 is well under-
stood by a virial expansion as it already shows up in the
second virial coefficient. The singularity is not the result of a
collective behavior and, in fact, is present for systems with a
finite number of particles. It is not accompanied by a diverg-
ing correlation length and in this sense the singularity does
not represent a genuine phase transition. It is rather a result
of a rapid change in the available phase space taking place
close toLy=2. Similar but less pronounced singularities are
expected to show up atLy=3 and larger integers at higher
virial coefficients.

The singularity for the maximum exponent—and simi-
larly for the KS entropy, as ascertained by us but not explic-
itly shown—is most pronounced for higher densities. This is
a consequence of the fact that these quantities are closely
related to the collision frequency[11]. It has been established
that in bulk systems these quantities exhibit a maximum at a
phase transition[18,19]. The maximum Lyapunov exponent
is a measure of the fastest dynamical events taking place in a
system, which are localized processes in space[3]. Thus, its
behavior near the transition point is not related to a diverging
length scale at the transition. Whereas in an ordinary phase
transition in the bulk the enhanced collision frequency—and,
thus, ofl1—is due to the emergence of a new structure, here
it is a consequence of the constraints imposed by the bound-
aries.

FIG. 10. Positive branches of Lyapunov spectra for 100-disk
systems withperiodic boundaries. The box width,Ly, is indicated
by the labels. The density,r=0.4, and the volume,LxLy, are fixed.
The Lypunov exponents are defined only for integer values of the
index l. In the inset, the regime supporting Lyapunov modes is
magnified. There,Ly increases from 1.2(bottom) to 2.8 (top) in
steps of 0.4. For details, we refer to the main text.

FIG. 11. The Lyapunov spectra plotted by the smooth lines are
for 100-disk systems with periodic boundaries, where the density,
r=0.9, and the volume,LxLy, are fixed. The resulting box widths,
Ly, are indicated by the labels. The dash-dotted curve labeled
“solid” is for 100 disks in a periodic channel with an aspect ratio
Ly/Lx=Î3/sN/2d required for a triangular lattice. The densityr is
also given. For details, we refer to the main text. Only the positive
branches of the spectra are shown.
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We expect the singularity found forLy=2 to be present
also for soft disks. In this case, however, the singularity is
likely to be weaker than the square-root singularity found in
the pressure curve of hard disks. Similar features found in
the present study should be present in three-dimensional
channels as well. It would be of interest to study these prob-
lems in more detail.
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