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Hard disks in narrow channels
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The thermodynamic and dynamical behavior of a gas of hard disks in a narrow channel is studied theoreti-
cally and numerically. Using a virial expansion, we find that the pressure and collision frequency curves exhibit
a singularity at a channel width corresponding to twice the disk diameter. As expected, the maximum Lyapunov
exponent is also found to display a similar behavior. At high density, these curves are dominated by solidlike
configurations which are different from the bulk ones, due to the channel boundary conditions.

DOI: 10.1103/PhysReVvE.69.066124 PACS nun®)er05.70.Fh, 05.20.Jj, 05.45.Pq, 61.20.Gy

[. INTRODUCTION of the disks. Narrower channels do not allow particles to pass
each other. At the same width, a singularity is also observed
The thermodynamic behavior of hard-disk systems hasor the collision frequency. In addition, the maximum
been a subject of considerable interest in recent yddrsn  Lyapunov exponent and the Kolmogorov-Sinai entropy dis-
particular, the freezing transition taking place in these sysplay a nontrivial dependence on the channel width in this
tems has been analyzed by computer simulations for casesgime.
where the aspect ratio of the simulation box is close to 1. The model we study consists of hard disks in a two-
Furthermore, the dynamical stability of such systems haslimensional box with side lengths, L, and aspect ratié
been studied in detail and Lyapunov spectra have been corfl,/L,. We vary the width of the box, keeping the volume
puted[2,3]. The latter describe the exponential growth, andV=L,L, and the particle density=N/V constant. Very small
decay, of infinitesimal phase-space perturbations and are us@Spect ratiosA<1 are considered, for which the box re-
ful for the analysis of collective processes involving variousSembles a narrow channel. For most of our work we use
different time scales. For example, the maximum LyapunO\Per'Od'C bqundary cqndltlons in both directions. Exact ther-
exponent was found to exhibit a maximum in the densityModynamic properties are known for extremely narrow
regime characteristic for the fluid-to-solid transitipj. Fur-  channels in this case, <3¢ [5,6]. Recently, the transport
thermore, the phase-space perturbations giving rise to t rope;)nes of t\(/jv_odp%rtlcles In a squarle F(J;”(_)l_?:c bez,l,f
smallest positive and negative Lyapunov exponents are cop2ve ?.e'r Stu 'tlﬁ i y t(_:orr;)pute(; simu atg.t'j" e Ct?stﬁ 3._
lective vector fields reminiscent of the modes of fluctuating Wo particles withrefiectingbounadary conartions in both di

hvdrod . d ferred t L 2 rections has also received attention, both by molecular dy-
ydrodynamics and are referred to as Lyapunov mOA. namics[8] and analytical approaché$]. It was found that
It is expected that they provide a sensitive tool for the stud

¢ collective fi in oh ¥or certain aspect ratios the compressibility becomes nega-
of collective Tlows In phase space. tive. We find analogous results also for partly reflecting
In a restricted geometry, such as a narrow channel, on

. . . poundaries, which are reflecting for the walls parallel to the
expects other interesting features to emerge when the W|dt|

of the channel becomes comparable to the disk’s size. Ig"ne? t((j;ryecuon of the boxx, and periodic for the walls par-

Throughout, reduced units are used for which the disk

large extension of the system in one directi@3]. This
provided the motivation for us to reinvestigate the thermo
dynamic and dynamical properties of a hard-disk gas in Ebarameter and is fixed to unity. Also Boltzmann’s constant
narrow channel. is taken unity

It is found that for narrow channels, the pressure exhibits The paper'is organized as follows. In Sec. Il we consider

a singularity at a channel width equal to twice the diamme'ihe low-density limit. In Sec. Il A we present an analytical

derivation of the pressure and show that the singularity tak-
ing place at.,=2 already exists in this limit. In addition, we

case, and the total ener@yis identical to the kinetic energy
K. As a consequence, the temperatlliris just an irrelevant

*Email address: tina@ap.univie.ac.at obtain an analytical expression for the collision frequency
"Email address: david.mukamel@weizmann.ac.il which shows a behavior very similar to that of the pressure.
*Email address: posch@ls.exp.univie.ac.at Results of numerical simulations of these quantities and of
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the Lyapunov spectra are presented in Sec. Il B. A numerical
study of the high-density case is presented in Sec. Ill. Full
Lyapunov spectra for periodic systems with periodic bound-
aries are discussed in Sec. IV. We close with a brief discus-
sion of the results in Sec. V.

II. LOW-DENSITY LIMIT FOR SYSTEMS
WITH PERIODIC BOUNDARIES L,

A. Virial approach to the equation of state
and collision frequency ©

The pressure in the low-density limit is obtained by the
leading terms in the virial expansion as applied to the
narrow-channel geometry. LgtL,) be the excluded volume
of a single disk in the channel. The phase-space volume as-
sociated with placingN disks in the channel is given by
FIG. 1. The excluded area associated with a disk in a channel of

QN =V(V-q) - [V-(N-1)q], (1) width L, <2 for the case of periodic boundary conditions. The area
q(Ly) is given by that of the union of the disk and its translationally
which, to leading order in the density, is reduced to displaced image within the channel.
N(N-1)q q \V? Pv qlLky) Ly ——
~=Wl1-——=2|=Wl1-— —=1+ - 4 —-Lg. 7
QN) =V (1 5 Vilt=%,) - @ KT 20 4 Y "

Note that the pressure curve exhibits a square-root singular-
ity as one approachds,=2 from below.

The singularity at.,=2 does not signify a phase transition
in the usual sense as it is not a collective phenomenon. In
S_y In(v B CI(_'—Q) (3  fact the singularity exists even for finité and it explicitly

2 ) shows up in the second term of the virial expansion. This is
different from the usual liquid-solid transition in the bulk,
wherek is Boltzmann’s constant. which is obtained only after summing over all orders of that

ForL,>2, the excluded area is simply given by the areaexpansion. The singularity in the narrow channel is a conse-
of a disk of radius 1, namelg(L,>2)=. To leading order quence of the fact that the available volume for the disks is a
in the density, the pressuieis given by singular function of the control parametér, at L,=2.

Higher-order terms in the virial expansion are expected to
= 95 - exhibit a singularity at other integer channel widths,
—=sv—=1+—, (4) =3,4....Thus singularities in the pressure are expected to
kT v 2v show up at these widths at higher densities.

We now turn to the evaluation of the collision frequency

and is thus independent of the channel witlfh This is the L ; )
,. The virial expression for the pressure, appropriately

expected leading-order expression of the virial expansion of2 X X ) o
a gas of hard disks. modified for two-dimensional hard disks, is given [&0]

For 1<L,<2, however, the excluded area is reduced due
to the interference with the disk image resulting from the PV 1
1+ 2 le Ve, (8)

Here,v=V/N is the specific volume. For low density, the
specific entropy of the gas is given by

S

periodic boundary condition in thg direction (see Fig. 1 NKT = 2NKTr5

Simple geometrical considerations yield
where the sum is over all collisions taking place during the

time intervalr. Here, the relative position vector of two col-

A(Ly) =2 6+ sin(26), (5) liding particlesi and | at the time of the collisionf.=r;
where -1, _satisfies|r_c|_:<r, and vc=v;-v; is the corresponding
relative precollision velocity. This may be written as
Ly=2 sin6). (6) PV 1
—=-1=——wmA
NKT kT 2P ©

The excluded volume(L,) depends orL,. Taking the de-

rivative of the entropy with respect to the volume and keepwhere Ap is the average momentum transfer in a collision.
ing the aspect ratid=L,/L, constant, one finds to leading For a large aspect ratid, the collision frequency is given by
order in the density [11
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vy = 2K 2 (0lv)g(0), (10) 0.025 LI ' 03
whereg(r) is the pair distribution function. At contaats o, o vy’
and in the low-density limit one hago)=1. Combining this 000 % 404
result with the Eqs(4) and (9), one finds for the average " '
momentum transfer > 0015 |
o 0.3
- = |
Ap= (Va/2)VkT. (11) g 0010 eeveeneeeeee]
This expression may also be derived directly from the 0.005 P .,.--"’ 192
Maxwell-Boltzmann velocity distribution. It is expected to o
hold also for narrow channels. The reason is that in the nar- I
row channel the velocity distribution is still isotropic and is 0.000 1 TS > > 50
given by the Maxwell-Boltzmann distributigisee Sec. Il B L
Therefore, one can use E@L1), together with Eq(9), to !
obtain the collision frequency for narrow channels, FIG. 2. Theoretical and simulation results fiN=20 particles

and a densityy=0.01 for the periodic-boundary case. Shown is the
4(p dependence of the maximum Lyapunov exponengright vertical
,V—i = —_(—U - ) (12) scalg, of the equation of statéPv/T)-1 (left vertical scale, full
VKT o\ KT squarey and the rescaled single-particle collision frequengy

. Lo . :(\571-/4)1/2 (left vertical scale, open squajesn the channel width
This expression is valid both below and abdyg-2. L,. The full line is computed from Eq(7).

It is expected that in such a highly anisotropic system the
pressure tensor is not isotropic. In the low-density limit, one

can evaluate the diagonal components of the pressure tens%entutm dls Ict:ons?k:v;ad i)??_th X r?n:/j delrﬁctrl]?nsv, ﬁlr“:] o?s i
P,xandP,,, using again the expression for the entropy in Eq.e pected, altogetner Six Lyapunov exponents vanish due 1o
(3). One finds the conservation of energy, momentum, center of njasky

in tangent spage and the regularity of the dynamics in the
phase-flow direction. For theartly reflectingboundary case,

Js v only four of the exponents vanish due to a lack of momen-
Pux = Lx L. = o - (1/2aL) 12q(Ly)’ tum and center-of-mass conservation in yhdirection. The
XLy ¥ Kolmogorov-Sinai(KS) entropy, hxs, which measures the

rate of information gain on the initial conditions due to the
time-reversible dynamics, is given by the sum of the positive

_ gs\ _v-(1/2L N4 - L§ exponentg14]. Since its dependence on the channel width is
Py=Ly\ 7] = _ : (13) qualitatively similar to that of the maximum Lyapunov ex-
aly/ L v—(1/2)q . .
X ponent\;, we concentrate on the latter in the following.
Furthermore, one has In Fig. 2, we compare the theoretical curves for the pres-
sure and collision frequency, Eqg), (7), and(12), with the
v(ﬁ) :} (ﬁ) +}|_ (ﬁ) numerical results. In this low-density regime, an excellent
dv)y 2 \aLy L 2 \aL, ,_x' agreement is obtained. Also shown in this figure is the

channel-width dependence of the maximum Lyapunov expo-
and, henceP=(P,,+Py,)/2. nent. It shows a shoulder at the critical width=2. The

It is evident that in the low-density limit, the pressure tangent-space perturbation associated with has been
tensor is isotropic forL,>2. It becomes anisotropic for shown to be localized in spa8]. This exponent is closely
Ly<<2. At higher densities, the two pressure-tensor compogonnected to the collision frequency and, as a consequence,
nents differ even abovie,=2 (see Sec. Il. The square-root has a similar qualitative behavior. This is particularly pro-
singularity of the total pressur at Ly=2 originates from nounced in the high-density regime as dealt with in the next
Py,. The other componenk,,, exhibits a weaker singularity. section.

In Fig. 3, we compare the theoretical curves for the
pressure-tensor component, and P, with computer
simulations for a density=0.01 and find excellent agree-

Here we carry out numerical simulations for the compu-ment. As noted above, it is evident that the square-root sin-

tation of the pressure, the collision frequency, and thegularity of P originates fromP,,.
Lyapunov exponents. The pressure is evaluated from the im- We have numerically verified that even in the narrow-
pulsive version of the virial theorem E@8) [12,13. The  channel regimel, <2, the system is ergodic enough such
collision frequency of a single particle,, is obtained from that the velocity distribution is still isotropic and is given by
the total number of collisions per unit time, divided By2.  the Maxwell-Boltzmann distribution. This supports the use
For the Lyapunov spectrum, we use the algorithm outlined irof Eq. (11) for the average momentum transfer at a collision
Refs. [4,2]. For theperiodicboundary case, the linear mo- even forL,<2.

B. Numerical simulations
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FIG. 3. Comparison of the, dependence of the theoretical Fl_G' 4. Simulatign _results foN=20 particles _and a density
curves for (Pu/T)~1, (P /T) -1, and (Pyw/T) -1 (lines) with N/V=0.4 for the periodic-boundary case. Shown is the dependence

numerical simulationgpoints for a system with 20 disks at a den- ©f the maximum Lyapunov exponent, (right vertical scalg of the
sity p=0.01. equation-of-state functiofPv/kT)-1 (full circles with labelP, left
vertical scalg, and of the rescaled single-particle collision fre-

quency, v5=[(mw/kT)¥2/4]v, (crosses, left vertical scgleon the

The singular behavior of the pressure is due t0 a sharghannel widthL,. », agrees well wittP. The dashed curves labeled

increase of the collision frequency as one approathie®  p, andp,, give the contributiongP,w/kT)~1 and (P, /kT)-1
from below. As can be seen in Fig. 2, the maximumof the respective pressure-tensor components.

Lyapunov exponent is reminiscent of this singularity as it is
closely related to the collision frequency. At this low density nearly corresponds to the most densely packed structure pos-
this singularity is not clearly pronounced. However, as will sible for such a channel width and density. Hence, it is char-
be shown below, at high densities the existence of a cusp aicterized by a minimum of the mean free path and a maxi-
Ly=2 is evident. The increase of the collision frequency ismum of the collision frequency and gives rise to the
due to arresting configurations in which a pair of disks bepronounced pressure maximumlgt1.5 in Fig. 5.
come trapped due to the boundaries. We have computed also the two pressure-tensor compo-
nentsP,, andP,, for a system with a density=0.8. As can
be seen in Fig. 7, the two components are significantly dif-
. HIGH-DENSITY REGIME ferent both above and below,=2. The singularity of the
_ ) _ pressure at,=2 is evidently caused bp,,, as is also the
For hard-disk systems at high density one has to rely only.;<e for low densities.
on numerical simulations. In Fig. 4 we present the pressure, - || the examples so far are for the case of periodic bound-
the collision frequency, and the maximum Lyapunov expo-

; o . aries in both thex andy directions. A qualitatively similar
nent as a function dt, at a densityp=0.4. Itis observed that  og it is obtained, if the long sides of the channel are elasti-

the singularity taking place at,=2 persists at high density cq)y reflective, whereas the short sides remain periodic. This

in all three curves. It is, of course, a consequence of thes jemonstrated in Fig. 8 fdd=100 particles at a density of
diverging collision frequency experienced by any two par-

ticles trying to pass each other. According to Ef2), the 20 ! I I
curves for the collision frequency and f&w/T-1 are pro-
portional with a proportionality constant independent of the
density. This is evidently confirmed in Fig. 4. For the special 15 0.9 -
case of onlyN=2 particles in a square periodic box, the
singularity atL,=2 appears at the critical densjty=0.5 and
has recently been observed.

When the density is increased beyond 0.5, another broaco;
peak emerges at sontg <2 in the curves for the pressure 0.8

and the maximum Lyapunov exponent. This is demonstrated 5 n 0.7, -
in Fig. 5. This feature is attributed to the pronounced short- 0.3 0.5
range crystallinelike order which is induced by the narrow- W

channel boundary conditions. Note that this order is not the 0
natural triangular lattice of the system in the bulk. A typical 1.0 1.5 20 25 3.0
microscopic configuration corresponding to this structure for L
a density 0.9 antl,=1.5 is shown in Fig. 6. All particles are

arrested and cannot travel across the system, which has beenFIG. 5. L, dependence of the pressure for various densities as
referred to as the localized regirfid. The structure in Fig. 6 indicated by the labels.

/T) -1

10 -
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FIG. 6. A typical microscopic configuration for a density Es s

=0.9 and a channel width,=1.5. It resembles the closest-dense = )
packing structure consistent with the periodic boundaries. It mini- & Ay
mizes the mean free path and, hence, maximizes the collision fre-§ 1.0
quency and the pressure, if the channel width is varied at constan™
density,p=0.9. 0.5
N/V=0.4, whereP, A4, andv are shown as a function of the 0.0
box width L,. The maxima are not as sharp as in Fig. 4 for
the periodic case, but are as pronounced. Ly

In order to get some insight into the dynamics of such
systems, it is useful to study the diffusion coefficient. It is FIG. 8. Simulation results foN=20 particles and a density
dimensional systems in the thermodynamic lifdi5]. How- the main text _Shown i§ the dependence of th_e maximum Lyap_unov
ever, it is possible to compute the mean-squared displac@-"ponent)‘l (rlghlt vertlca.d scalg of the equgtlon-of-state function
ment for afinite system and to extract effective diffusion (Pv/K) =1 (full circles with labelP, left vertical scalg; and of the
constantsD, and D, in the x andy directions, respectively. rescaled single-particle colision frequency,=[(w/KT)**/4]v,
They are obtained from fits to the linear growth(Afx2> and (crosses, left vertical scglen the channel width.,. v, agrees well

5 . L with P. The dashed curves label&y, and Py, give the contribu-
(Ay#) for timest>40. The results for a density=0.8 are tions (Pyw/KT)~1 and (P /KT)-1 of the respective pressure-

shown in Fig. 9. As expected, vanishes forL, <2, while  tensor components.

Dy is nonzero. In factD, increases withL, approaching

unity as a result of the periodic-boundary restrictions disfa-exponents, of which only the positive brancf\,=0;l
voring momentum exchange in thyedirection. Another in-  =1,2,... N}, is shown. The spectra are only defined for
teresting feature of Fig. 9 is the vanishingdf andDy for integer values of the index, which labels the exponents
L,>2.7. This is due to solidlike triangular configurations according to size. The lines are only drawn for clarity. Ac-

characteristic of the bulk at this high density. cording to the equilibrium formulation of the conjugate-
pairing rule, the negative branch of the spectia,=0;l
IV. SOME REMARKS ON LYAPUNOV SPECTRA =2N+1,..., 4N}, is the mirror image of the positive branch

16].

In Fig. 10, we plot the Lyapunov spectra for a 100'di3k[ ']I'he inset of Fig. 10 provides a magnified view of the
system in a narrow periodic box. All spectra are for a densitysmga|| exponents. They turn out to be degenerate, which gives
p=0.4, which corresponds to a fluid. Since the voluing,,  (ise to a steplike appearance of the speptiaThe tangent-
is fixed, an increase of the channel widt varied in the  gpace perturbations associated with these exponents are col-
figure in steps of 0.4, decreaskg accordingly.Ly is indi- |ective, wavelike fields defined over the simulation box, and
cated by the labels. Each spectrum consistsfiylapunov  gre referred to as Lyapunov modés3,17. The multiplicity

is determined by the intrinsic symmetries of the Hamiltonian

and the boundary conditions, which give rise to the con-
. 3.5 T T T 0.10
3.0 H
. Ho0.08
- 25 |
& . 20 | —0.06
& Dy Dy
- 15 = 4 Dy 0.04
1.0 | & Dx
T PR ~0.02
05 [
0.0 MAE;;E' 0.00
2.8 1 15 2 25 3
L, Ly
FIG. 7. Simulation results for the pressure cur¢®s/T)-1, FIG. 9. Effective diffusion constan{see the main texin the x
(Pww/T)—1, and(Pyw/T) -1 as a function of the channel widltl. andy directions for disks in a narrow channel with periodic bound-
The system consists ®§=20 particles at a density=0.8. aries at a density=0.8.
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the particles contributing to the large exponents at any in-
stant of time. The active zone moves around in space, restor-
ing homogeneity on average.

The smooth lines in Fig. 11 show Lyapunov spectra for
analogous 100-disk systems for a dengity0.9, where the
channel width is indicated by the labels. The cage 1.5
corresponds to the arrested structure of Fig. 6 and is of par-
ticular interest. In Fig. 11, we compare it with the dash-
dotted spectrum of 100 disks in a periodic channel with an
aspect ratioL,/L,= V3/(N/2). For L,=1.8258 andN=100,
the density isp=1.039, and the particles form a triangular
lattice characteristic of a solid in the bulk. Although the
nearest-neighbor separations and, hence, the collision fre-
quencies, are nearly the same for both systems, the Lyapunov

! spectra are distinctly different. The maximum exponant,

FIG. 10. Positive branches of Lyapunov spectra for 100-diskiOr the arrested structure is significantly larger than for the
systems withperiodic boundaries. The box width,y, is indicated ~ triangular system, whereas the behavior of the smaller expo-
by the labels. The density=0.4, and the volumeL,L, are fixed. ~ NeNts is just the reverse. Th_|§ example demonstra_tes that the
The Lypunov exponents are defined only for integer values of thd-yapunov spectra are sensitive to structural details and are
index |. In the inset, the regime supporting Lyapunov modes ispotentially a useful tool. But it is fair to say that no theory
magnified. ThereL, increases from 1.2bottom) to 2.8 (top) in exists at present to interpret such spectra in full detail.
steps of 0.4. For details, we refer to the main text.

0.6

190

200

0 20 40 60 80 100 120 140 160 180 200

served quantities, energy, and momentum. A complete clas- V. DISCUSSION

sification in terms of transvers€f), longitudinal (L), and In this work, the thermodynamic and dynamical behavior
momentum(P) modes is given in Ref.20]. Theoretical at-  of hard disks in a narrow channel is analyzed using analyti-
tempts have been made to interpret the modes in terms @f| and numerical approaches. The main results are for peri-
fluctuating hydrodynamicg21-25. odic boundary conditions in bothandy directions. Related
We observe that a particular exponent, say the smallesfydies of reflecting boundaries parallel to the channel axis
positive, increases with, and, hence, with the wave num- reyeal that similar features exist there as well. It is found that
ber, k=2m/L,=27L,/V, belonging to this mode. This is re- the pressure, collision frequency, maximum Lyapunov expo-
ferred to as a “dispersion relatiorf2,3]. Thus, Aoy in- nent, and Kolmogorov-Sinai entropy curves exhibit a singu-
creases monotonously witly. However, as Fig. 10 shows, |arity for a channel width equal to twice the disk diameter.
this proportionality does not hold for the large exponents.For low densities, this singularity fd and v, is well under-
There is a crossover of the spectra reversing the sequence &bod by a virial expansion as it already shows up in the
A nearlL,=2. This is mainly a consequence of the collision second virial coefficient. The singularity is not the result of a
frequency. The perturbations for the large exponents argplective behavior and, in fact, is present for systems with a
found to be localized in space with only a small fraction of finite number of particles. It is not accompanied by a diverg-
ing correlation length and in this sense the singularity does
not represent a genuine phase transition. It is rather a result
10 . of a rapid change in the available phase space taking place
solid (p = 1.039)| close toL,=2. Similar but less pronounced singularities are
~~~~~ expected to show up dt,=3 and larger integers at higher
el SN ] virial coefficients.
2.05 NN The singularity for the maximum exponent—and simi-
4r 21 >0 N larly for the KS entropy, as ascertained by us but not explic-
' itly shown—is most pronounced for higher densities. This is
a consequence of the fact that these quantities are closely
0 ' ' L related to the collision frequenggl]. It has been established
0 20 100 150 200 that in bulk systems these quantities exhibit a maximum at a
! phase transitioi18,19. The maximum Lyapunov exponent
FIG. 11. The Lyapunov spectra plotted by the smooth lines aré-S ameasure of the fast(_ast dynamical eyents taking pla_lce ina
for 100-disk systems with periodic boundaries, where the densitySyStem, which are localized processes in s§ateThus, its
p=0.9, and the volumé,,L,, are fixed. The resulting box widths, behavior near the transition point is not r_elated toa diverging
L,, are indicated by the labels. The dash-dotted curve labeletength scale at the transition. Whereas in an ordinary phase
“solid” is for 100 disks in a periodic channel with an aspect ratio transition in the bulk the enhanced collision frequency—and,
Ly/LX=€§/(N/2) required for a triangular lattice. The densjiyis  thus, of\;—is due to the emergence of a new structure, here
also given. For details, we refer to the main text. Only the positiveit iS & consequence of the constraints imposed by the bound-
branches of the spectra are shown. aries.

12 T T T

8 <
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